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Abstract

We apply a lattice-based self-consistent mean field theory in order to investigate poly-disperse polymer brushes dissolved in good solvent.

The systems investigated consist of asymmetric poly(dimethylsiloxane)–polystyrene di-block copolymers near air–ethylbenzoate interface

and of diblock copolymer polystyrene–poly(ethyl oxide) deposited on a air–water interface. Our results have been compared to experimental

data from neutron reflectivity experiments and have shown very good agreement. We have also systematically studied the structure of the bi-

disperse and tri-disperse brush for various values of the molar fraction of the chains and of the overall surface densities. In addition, we have

investigated the behavior of the brushes in other type of solvents.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Polydisperse molecular weight distribution; Polymer brush in good solvent; Mean-field theory
1. Introduction

Chains anchored by one end to a surface or an interface,

are called polymer brushes [1–6]. They provide practical

means for modifying interfacial properties. Strong overlap

among neighboring chains is observed once the distance

between grafted points is small compared to the macromol-

ecular chain dimensions. Hence, the chains deform and

stretch in the direction perpendicular to the interface. They

are often formed by adsorption from solution, i.e. by

bringing a solution containing end-functionalized chains

into contact with an interacting surface. The ends can either

be chemically attached (quite high binding energy [7,8]) or

physi-adsorbed [9–11]. The adsorbing, functional end could

be a reactive group, or the immiscible block of a copolymer

[12–17].

Initial theoretical and experimental studies of polymer

brushes, were concentrated on monodisperse polymers.

However, polydispersity, which is often an unavoidable

feature of polymer systems (most commercial polymers has

a broad molecular weight distribution), has been shown to
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affect the brush structure [18–24]. The properties of bimodal

polymer brushes were first explored with analytical self-

consistent mean field (SCF) methods, valid in the limit of

strong stretching and for infinite molecular weight [19,20].

Dan and Tirrel [23] have examined prototype bimodal

brushes in great detail by means of numerical self-consistent

mean field (nSCF) calculations. An understanding of the

relationship between the molecular weight distribution and

the brush properties is thus essential for purely scientific

reasons and for engineering applications (i.e. tailoring the

brush structure according to specific needs).

In this paper, we systematically investigate realistic

polydisperse polymer brushes mainly in a good solvent. In

Section 2, we present the theoretical backgrounds and

explain the numerical self-consistent field method. In next

sections we mainly investigate bimodal systems previously

studied by neutron reflectivity experiments [25–28]. We

also investigated trimodal (tri-disperse) distributions and

polydisperse brushes in other type of solvents. We end our

presentation with the conclusions and proposals for future

studies in Section 5.
2. The self-consistent field model

In the present theoretical investigation, we apply a
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self-consistent mean field theory in order to describe our

polymeric system (i.e. a polymeric solution near a surface).

The SCF theory was originally developed for bulk

polymeric systems [29] and later developed by Dolan and

Edwards [30,31] to treat polymers in inhomogeneous

environments. The basic idea of this method is to solve

for the Green functions propagators describing the local

density of a random walk representation of a polymer chain

in the presence of the mean field imposed by the repulsive

and attractive interactions between all macromolecular

chains. This mean field is a function of the local density,

which in turn is determined, self-consistently, by the

average value obtained from the Green functions propaga-

tors. One of the most powerful versions of this approach is

the lattice version, developed by Scheutjens and Fleer

[32–35].

The self-consistent equations have an analytical solution

for a particular limit, usually referred to as the classical limit

[35]. The analytical theories [36–44] took advantage of the

fact that in a system in which polymers are strongly

stretched as in a brush, fluctuations around the most

probable, or ‘classical’ paths are small and can be ignored

to a first approximation. In the analytical self-consistent

field (aSCF) theories the mutual interaction of the polymer

chains is represented by a mean-field (referred as

‘Kinematic’ potential) that gives rise to a non-uniform

stretching of the chains [19]. The conformations of polymer

chains are similar to the flight path of a particle starting at

rest at the location of the free end and being accelerated in a

field toward the ‘bottom’ of the brush. Exploiting the

property that the chain ends are located everywhere, it has

been shown that the mean-field potential is harmonic [19].

In addition aSCF theories have been extended in order to

study dense polymer brushes following a bimodal molecular

weight distribution [20,40]. For bimodal brush, it has been

revealed that the ends of the shorter and the longer chains

segregate into separate regions [20,40].

The self-consistent mean-field lattice model developed

by Scheutjens and Fleer has been used to describe polymer

melts and polymeric solutions near a solid substrate,

polymers chemically attached to the substrate, rings,

branched chains, copolymers and multi-component poly-

meric systems [6].

A three-dimensional (xyz) lattice of simple symmetry is

assumed. The substrate is placed parallel to the xy plane; the

resulting lattice layers are numbered starting from the layer

next to the surface (zZ1) and ending at a layer (zZM)

where the presence of the substrate has negligible effect.

Each lattice site has Z (the coordination number) neighbor-

ing sites, a fraction l0 of which lie in the same layer and a

fraction l1 of which lie in each of the adjacent layers. A

polymer molecule is represented by a chain of ri connected

segments, numbered sZ1,2,.,ri. The index i is adopted to

denote the type of the molecule. An additional index j is

used in order to account for the polydispersity. Thus, chains

appear with several sizes, rij , where j varies from a minimum
to a maximum value. From two consecutive segments we

define the bond, b (b(of segments s)hbsZzsKzsK1). For

two consecutive segments lying in layers z and zC1, b is

C1. For two consecutive segments lying in layers z and

zK1, b is K1. The value of b is 0 if both consecutive

segments are lying in layer z.

Each chain can assume a large number of possible

conformations in the lattice. Each conformation (c) is

defined by specifying the layer numbers in which each of the

successive chain segments s finds itself (i.e. ch{(sZ1,

zZz1), (sZ2, zZz2),.,(sZrij , zZzri
j
)}). The number of

chains (i, j) in conformation c is indicated as ncði;jÞ. The

chains are distributed over the various possible configur-

ations (sets of conformations fncði;jÞg) in the lattice with

statistical weights depending on the energy and entropy of

each configuration. The proper description of the system

will be given in the context of statistical physics by means of

the grand canonical partition function. The non-bonded

chain interactions are approximated using the Bragg–

Williams mean field approximation and the intra-chain

interactions are approximated using bending energies.

Equilibrium is the state at which the chains are distributed

over the various possible conformations in the lattice such

that the free energy (derived from the partition function) is

at its minimum. In the mean field approximation, we make

the assumption of replacing the sum of several terms in the

partition function by its maximum term (i.e. zero

fluctuations of the density in the (x, y) directions). An

expression for the number of molecules ncði;jÞ of chain type i

of size rij in conformation c, can be found by minimizing the

natural logarithm of the maximum term of the partition

function with respect to ncði;jÞ, subject to the full occupancy

constraint applied layerwise.

In order to develop a theoretical framework capable of

describing realistic situations, the initial version of the SCF

theory has been extended to incorporate conformational

stiffness [45–48]. Chain stiffness is introduced by assigning

different bending energies to different bending angles

formed by triplets of segments (or pairs of bonds). For a

cubic lattice only 08 (back folding or V conformer), 908

(L conformer) and 1808 (straight or I conformer) bending

angles are possible (see Fig. 2 in Ref. [48]). The bending

energies can be determined from the characteristic ratios

[47–49]. To each bending energy (3b) we associate the

corresponding Boltzmann factor tbZexpðK3b=kBTÞ, where

T is the temperature.

The system can be described in a mean field self-

consistent approximation in terms of a segment potential

uA(z) depending only on the chemical nature of the segment,

or equivalently in terms of a segment weighting factor

GðzÞZeKuAðzÞ=kT . The weight G(z) is proportional to the

probability of finding a segment in layer z of the interfacial

system, relative to finding it in the bulk. Then the statistical

weight for finding an end of an s-segment long chain in layer

z, G(z, s), is defined. It follows a recursion relation, which is

solved once we know a proper initial condition. For the
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forward propagation the recursion relation has the following

expression:

Gbs ðz; sj1ÞZGðzÞhGbsK1ðzKbs; sK1j1Þi (1)

where

hGbsK1 ðzKbs; sK1j1Þihljbsj

X
bsK1

tbsK1bs
GbsK1

!ðzKbs; sK1j1Þ (1’)

For the backward propagation:

Gbs ðz; sjrÞZGðzÞhGbsC2 ðzCbsC1; sC1jrÞi (2)

where

hGbsC2 ðzCbsC1; sC1jrÞi

hljbsC1j

X
bsC2

tbsC1bsC2
GbsC2 ðzCbsC1; sC1jrÞ (2’)

Then by means of a composition law we find the volume

fractions. For the grafted chains:

fðzÞZGðzÞK1
Xrgmax

sZ1

X
bs

X
bsC1

tbsbsC1
Gbs

g ðz; s=1Þ

! Cg
sG

bsC1
g ðz; s=sÞCGbsC1

g ðz; s=fkRsC1gÞ
� �

(3)

where C
g
s Z ~sðngs =n

g
totalÞ1=

P
z Ggðz; s=1Þ and ~s is the dimen-

sionless surface density.

The solvent’s volume fraction is:

fðzÞZCf
1GðzÞ (3’)

where Cf
1Z ðMK �rg ~sÞ=

P
z GðzÞ. M is the number of the

layers.

Finally, it is straightforward to find the concentration of

the end and non-terminal segments.

The details of the SCF formalism are given in Refs. [32–

35,47,48]. From now on, this modified version of the plain

SCF theory, which treats both features (polydispersity and

end-grafted chains) simultaneously, will be referred as

numerical SCF (nSCF) theory.

Actually, all equations derived for melts in Ref. [48] are

valid. But in melt polymer brush we impose the constraint

that the lattice is fully occupied exclusively by grafted

chains. Hence, the number of layers, M is given by:

MZ �rg ~s, where �rg are the number-average molecular

weight of the grafted chains. In the present work, we use

M 0 layers with M 0OM, so the (M 0KM) layers are occupied

by solvent molecules, where each solvent molecule

occupies one lattice site.

In order to describe bidisperse brushes in a good solvent,

Zhulina et al. [20] have derived the following analytical

expressions for the height of the two characteristic regions

of the bimodal brushes.
HS ZHo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K ~q2=3

q
(4a)

HL ZHoð1Ca ~q1=3Þ (4b)

where ahðNLKNSÞ=NS

The short and the long chains consist of NS and NL

segments, respectively. The symbol ~q is the percentage of

the long chains, while Ho is the height of the monodisperse

case with the same dimensionless surface density ~s.

Ho Z b ~s1=3NS (4c)

The parameter b symbolize the stiffness p and the quality y

(second virial coefficient) of the good solvent,

bhð8py=p2Þ1=3. According to this theory, the bi-parabolic

volume fraction profile is given by the following

expressions:

fðzÞZ
3

2
~s2=3

p2a3

8py

� �1=3

1K
z

Ho

� �2� �
;

0%z%Hs (5a)

fðzÞZ
3

2
~s2=3

p2a3

8py

� �1=3

1Ku2
z

Ho

� �� �
;

Hs%z%HL (5b)

where uðxÞZ ðxKa½x2K ð1Ka2Þð1K ~q2=3Þ�1=2Þ=ð1Ka2Þ

and a3 is the monomer’s volume.

2.1. Mapping real polymers onto the lattice

Among the possible choices for the lattice segment size,

the ones that have been used the most are the Kuhn

statistical segments [48,53] and the Flory segments [47–50].

A Flory segment, of length lF, is defined such that a chain

will have the same maximally extended length (end-to-end

distance in all-trans conformation) and volume in the Flory

segment representation as are measured experimentally in

polymer melts [47,48].

Equating the volume of the Flory chain, containing r

Flory segments, to the volume of a real chain:

rl3F Z
nmMm

NAr
(6a)

where nm is the degree of polymerization, Mm is the

monomer molecular weight, r the mass density of the

polymer and NAis Avogadro’s number.

Moreover, equating the length of the fully extended Flory

chain to the maximally extended length of the real chain:

rlF Z nblbsin
qb

2

� �
(6b)

where nb is the number of chemical bonds per chain, lb is the

bond length and qb is the bond angle along the chain

backbone.



Scheme 1. Geometrical mapping of a PEO monomer (atoms and bonds in

black) onto an equivalent three-bead ‘polymethylene’ monomer (‘atoms’

and ‘bonds’ in grey).
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By combining these equations, an expression for the

length of the Flory segment is obtained,

lF Z
nmMm

NArnblbsin
qb
2

� �
" #1=2

(7)

The bending energies are determined from the characteristic

ratios by matching the mean-square end-to-end distance

between a real chain and a chain of correlated Flory

segments,

hR2iZCNnbl
2
b ZCF

NðrK1Þl2F (8a)

in which CF
N is the characteristic ratio of the correlated Flory

chain.

Assuming that tVZ0 (i.e. back-folding is forbidden), the

characteristic ratio of the Flory chain is related to the

bending statistical weights by

CF
NZ 1C

tI

2tL
Z 1C

1

2
eð3LK3IÞ=kT (8b)

Since the characteristic ratio depends only on the difference

between the energies (3LK3I), one (in our case 3I) case may

be set arbitrarily to zero. So the bending energy 3L can be

estimated once the characteristic ratio CN is known.

The Flory segment is usually much shorter than the Kuhn

segment. Most researchers use the Kuhn segment as the unit

segment for their coarse-grained representation. In our

nSCF methodology, we use the Flory segments, in order to

have correct representation of both polymer density and

polymer stiffness and hence study realistic polymer systems

[49–51].

Fig. 1. Volume fraction profiles of PS chains as a function of the distance

from the interface, for bimodal monolayers. The solid line describes the

prediction of nSCF model and the dashed line the best-fit to the experiment

[25]. Doted lines depict the predictions of the aSCF theory [20]. The
3. Brushes studied by neutron reflectivity

systems studied are: (a) 66/170 kg/mol, sZ2!10K2 chains/nm2, 62%

short chains. (b) 66/330 kg/mol, sZ1.88!10K2 chains/nm2, 83% short

chains. (c) 30/330 kg/mol, sZ1.75!10K2 chains/nm2, 75% short chains.
3.1. PS in good solvent

Our theoretical investigation starts with the polymeric

brush studied by Kent et al. [25]. The system investigated

consisted of Langmuir monolayers of highly asymmetric

poly(dimethylsiloxane)–polystyrene (PDMS–PS) diblock

copolymers on the interface of air–ethylbenzoate (EB).

This is a system with the smaller PDMS blocks (physically)

anchored to the interface creating Langmuir monolayers. To

our knowledge, this experimental study was the first direct
measurement of the structure of bimodal tethered chain

layer using neutron reflectivity. In our computational model

we treat this system as a system of grafted chains, as the

anchoring energies are very large [25].

The mapping of the experimental system to our lattice

SCF system is straight forward (i.e. we use the Flory

segments, Section 2.1). In the results produced by means of
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our nSCF method, we have assumed that the temperature of

our system is 25 8C, which is the temperature at which

experimental data [25] were collected. We use a mass

density of 1.0525 g/cm3; a value derived from expressions,

of the mass density as a function of the pressure and

temperature, found in Ref. [52]. The Flory segment

estimated as lFZ8.016 Å, therefore, the number of chemical

(styrene) monomers in a Flory segment is 3.14. The value

used in the present work for the characteristic ratio, CN, of

the equivalent trimer was estimated to be 8.00 [52,53]. For

this CN, Eqs. (8a) and (8b) give a bending energy 3LZ
0.538kBT(tLZ0.584).

Practically, the only parameter in our system is the Flory

interaction parameter between the PS and the good solvent.

We assume that PS polymeric chains and solvent have

approximately the same interaction energy with the inter-

face hence they show a zero Flory interaction parameter.

The best choice for the Flory parameter for the interaction

between polystyrene and the EB solvent (a good solvent for

PS) is cZ0.15. We have studied all bidisperse systems

investigated by Kent et al. [25]. Therefore, our systematic

study includes diblock bimodal copolymers PDMS–PS of

molecular weights 11–66/20–170, 11–66/28–330 and 4–30/

28–330 kg/mol. In order to compare with the aSCF predic-

tions we need to estimate the b parameter. This is done by

identifying the Flory segment of the nSCF theory with the

a-parameter of the aSCF theory. Then, the parameter b takes

the value 0.811 nm (i.e. 1.012 Flory segments).
3.2. PEO in good solvent

The second system investigated consists of diblock
Fig. 2. Reflectivity divided by reflectivity for bare EB surface for the case of Fig. 1(

to NR data (dashed line). The worst agreement is observed for q-values in a region a

better than the best-fit to NR data. Moreover if we set a non-zero value in the adsor

at this region of q (doted line).
copolymer polystyrene–poly(ethyl oxide) (PS–PEO). The

system has been studied with NR by Currie et al. [27]. The

block copolymers were dissolved in chloroform and

deposited on a air-water interface. The smaller PS blocks

anchor the copolymers to the interface. This system has also

been treated as a system of grafted chains.

Since the bonds C–O and C–C do not have the same

length we map the PEO monomer onto an equivalent

‘polyethylene trimmer’ (Scheme 1) [49]. This equivalent

structure contains only single bonds, each with bond length

of lbZ1.96 Å and angle between the two successive bonds,

qb, at 1318.

In the results produced by means of our nSCF method,

we have assumed that the temperature of our system is

25 8C, which is the temperature at which experimental data

[27] were collected. The mass density is 1.10 g/cm3; found

in Ref. [52]. The Flory segment estimated as lFZ4.315 Å,

therefore, the number of chemical (ethyl oxide) monomers

in a Flory segment is 1.21. The value used for the

characteristic ratio, CN, was estimated to be 3.4 [52,53].

For this CN, Eqs. (8a) and (8b) give a bending energy

3LZK2.45 kBT(tLZ11.593).

The optimum choice for the Flory interaction parameter

between the PEO and the good solvent (D2O) is cZ0.12. In

Ref. [28] an analogue investigation with SCF theory

proposed cZ0. This difference is legitimate since with

our nSCF we account for the chain stiffness too. We assume

that PEO polymeric chains and solvent have a difference in

the interaction energy with the interface approximately

1kBT. Hence the Flory interaction parameter between the

PEO and interface is cZK1 (the minus sing shows that

there is a preference for the surface).
a). We present the predictions of the nSCF theory (solid line) and the best-fit

round 0.015 ÅK1. At high values of q (O0.03 ÅK1), the agreement is much

ption energy of the polymer, at about 4kT, we achieve even better agreement



Fig. 3. Plots of the layer heights, as a function of the surface density, of the 66 and 170 K PS blocks. (a) Comparison of the layer heights of the 170 PS blocks in

the mixed monolayers (filled symbols) with those in the single component 170 monolayers (open symbols) as a function of 170 surface density. In the strongly

interacting regime, the 170 blocks are more stretched in the bimodal monolayer than in the single-component monolayers. (b) Comparison of the layer heights

of the 66 PS blocks in the mixed monolayers (filled symbols) with those in the single component 66 monolayers (open symbols) as a function of 66 surface

density. In the strongly interacting regime, the 66 blocks have nearly the same dimension in the bimodal monolayer as in the single-component monolayers. In

both plots the circles correspond to the NR data and the squares to the nSCF results. Dashed lines depict the predictions of the aSCF theory [20] for the single

component case.
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4. Results and discussion

In Figs. 1–3, we show results for the PS and we compared

with the experimental data from NR experiments. Fig. 1

shows volume fraction profiles for the bimodal systems

studied experimentally in Ref. [25]. The systems investi-

gated include various surface densities of the anchoring

blocks and percentages of the short chains. In Section 4, we

report experimental surface density in units of inverse

surface. The relation between this surface density and the

dimensionless one used in the expressions of the nSCF and

aSCF models is ~sZsl2F. In Fig. 1(a), we study the 66/

170 kg/mol system with surface density of the anchoring
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blocks sZ0.02 chains/nm2, where the percentage of the short

chains is about 62%. In Fig. 1(b) and (c),we investigate the 66/

330 kg/mol system with sZ1.88!10K2 nmK2 and 83%

short chains and the 30/330 kg/mol system with sZ1.65!
10K2 nmK2 and 75% short chains, respectively. Generally the

agreement between nSCF and best-fit to NR data profiles is

very satisfactory (in our work we use the same Flory

interaction parameter for all existing experimental data). In

the same figure, we plot the predictions of the aSCF

methodology [20], where similar behavior is observed. The

most significant deviationof theSCF theory, in bothnumerical

and analytical form, from the best-fit to NR data profiles, is

observed in Fig. 1(a).
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Fig. 5. Volume fraction profiles of the long (a) and short (b) chains as a

function of the distance from the surface for 66/170 kg/mol bimodal

system. The percentage of the short chains increases from 10% (graph A) to

90% (graph I) with constant rate. The total surface density is constant (sZ
1.9!10K2 chains/nm2).

Fig. 6. Volume fraction profiles of the long PS chains as a function of the

distance from the surface for trimodal brushes. The size of the long chains

(170 kg/mol), the total surface density (sZ1.9!10K2 chains/nm2) and the

percentage of the long chains (20%) are kept constant. Graph A presents the

monodisperse case (170 kg/mol) hence sZ0.38!10K2 chains/nm2. For

the shorter chains, one chain size is kept constant (66 kg/mol) while the

molecular weight (in kg/mol) of the other chain grows gradually (B:8.2, C:

32.7, D:114,4, E:150.3). The trimodal mixture consists of 40%medium size

chains and 40% short chains. Graph E shows that as medium chains become

larger, an analogue effect as those observed for the bimodal case is present,

where the stretching of the long and short chains tends to be similar.
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Then we have estimated the reflectivity spectrum of each

system under investigation. Fig. 2 shows that the agreement

is satisfactory, with largest deviation in the region 0.012–

0.02 ÅK1. Moreover, we have found that the agreement

with reflectivity data is even better if we assume a repulsive

force between the surface and the polymeric material (PS).

If the Flory interaction parameter between the PS and the

interface is set to 4, the corresponding reflectivity from the

nSCF volume fraction profile matches better the NR data for

high values of the scattering vector q (dotted line in Fig. 2).

Next in Fig. 3, we compare the characteristic dimensions

of the bimodal structure with those of the single-component

monolayers. Such a comparison requires the knowledge of
the surface density of each component in the mixed

monolayer. In our computational study we have used the

estimations for the surface density, derived in the

experimental NR study [25]. In Ref. [25], in order to

estimate the surface densities they have made the

assumption that the profiles of the bimodal (mixed)

monolayer can be resolved into two parabolas representing

the contributions of the two components. The filled symbols

in both Fig. 3(a) and (b) are referred to three bimodal

systems with the same molecular weight of 66/170 kg/mol

but different surface densities and percentage of short

chains. The overall surface densities, with increasing order,

are sZ0.62!10K2 nmK2, sZ2!10K2 nmK2 and sZ
2.43!10K2 nmK2. In the first case the percentage of the

short chains is 50% and in the other two cases the

percentage of the short chains is 62%.

We show data on the layer height for various surface

densities of the single-component and of the mixed

monolayer. In Fig. 3(a), we compare our results (square

symbols) for the layer height of the 170 PS blocks in the 11–

66/20–170 mixed monolayers with those in the single-

component 20–170 monolayers as a function of 20–170

surface density. We clearly observe that in the strongly

interacting regime, the 170 blocks are more stretched in the

bimodal monolayer, than in the single-component mono-

layers. On the contrary when we compare in Fig. 3(b) the

layer heights of the 66 PS blocks in the 11–66/20–170

mixed monolayer with those in the single-component 11–66

monolayer as a function of 11–66 surface density, we



Fig. 7. Comparison of the trimodal case 170/113/56.5 kg/mol (showing the

maximum stretching in the region close to the interface and brush height)

with other polydisperse cases. In all cases long chains (170 kg/mol)

represent 20% of the total surface density (sZ1.9!10K2 chains/nm2).

Graph A corresponds to uniform distribution of the shorter chains (from 56.

5 kg/mol to 169.6 kg/mol, at 80%). Graphs B and C depict bimodal cases

where short chains sizes are 56.5 and 113 kg/mol, respectively. Graph D

corresponds to trimodal distribution, where 70% are medium size chains

and 10% short chains. (a) Volume fraction profiles of the long PS chains

and (b) volume fraction profiles of the free ends of the long PS chains as a

function of the distance from the surface for trimodal brushes.
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observe that even in the strongly interacting regime, the 66

blocks have nearly the same dimension in the bimodal

monolayer as in the single-component monolayers. In order

to understand the observed behavior we point out that in the

first layer of the bimodal brush the contacts between the

chains are reduced by the strong stretching of the long,

while short chains are not disturbed appreciably. Moreover,

in this way large part of the long chains is transferred to the

outer region where the polymer concentration is lower and

so the reduction of the entropy is much lower. In this way

the system manages to minimize the free energy. This

‘unexpected’ increase (compared to the monodisperse case)

of the polymer concentration in the outer region, is

responsible for the bi-parabolic profile of the volume

fraction of the polymer. From Fig. 3, we conclude that the

same trends are observed from the NR experimental data

and the nSCF calculated results.

In Fig. 4, we have also systematically study the influence

of the molecular weight of the short chains on the extension

of the long chains, assuming fixed surface density of each

component of the bimodal system. We have found that the

larger the size of the short chain themore extended are the long

chains in the region close to the interface. But there is a

maximum size of the short compared to the size of the long

chains, where the minimization of the free energy is achieved

by similar stretching of long and short chains. This is shown in

graph F of Fig. 4(a) and more clearly in Fig. 4(b) where in the

volume fraction profile of total PS chains we do not observe

two parabolas. In this case, different stretching of the long

compared to the short chains is not compensated byanentropic

and enthalpic gain in the outer region where mainly long

chains exist. So both long and short chains stretch similarly as

in the monodisperse case (Fig. 4(b), graph G). From Fig. 4(b),

we conclude that the maximum extension of the brush is

achieved when short and long chains become of equal size

(monodispere sample).

In addition, in Fig. 5 we have fixed the molecular weight

and the total surface density and systematically increase the

percentage of short chains. We observe an increase in the

difference in the stretching of the long chains compared to

the short chains as the percentage of the short chains in the

bimodal mixture increases (Fig. 5(a)). In Fig. 5(b) we have

shown that in the case of low percentage of short chains, the

short chains shrink in proportion to the fraction of the short

chains. Both conclusions agree with the predictions of the

theoretical study of Dan and Tirrel [23].

Moreover, we have systematically investigated brushes

with trimodal molecular weight distribution. Fig. 6 is a

graphical presentation of the influence of the shorter chains on

the stretching of the long chain. We concluded that one can

find trimodal polymeric structures for which the longer chains

behave as in the bimodal case where the stretched region next

to the surface is maximized. In Fig. 7(a) we observe that for

molecular weights 170/57/113 kg/mol (case of most extended

trimodal brush) with 10% chains of 57 kg/mol and 70%

chains of the intermediate molecular weight (113 kg/mol)
we get a maximum at 480 Å comparing to the 304 Å for the

bimodal case of 170/57 kg/mol when 80% of the chains are

short chains. Moreover, the volume fraction of the free end-

segments of long chains for the molecular weight 170/57/

113 kg/mol maximizes at 561 Å, comparing to the bimodal

case of 170/57 kg/mol where we get maximum at 416 Å and

with slighter lower value (Fig. 7(b)). Graph C, in Figs. 7(a)

and (b) indicates that the case of maximum stretching is



Fig. 8. Volume fraction profiles of PEO chains for bimodal distributions. The solid line describes the prediction of nSCF model and the dashed line the best-fit

to the experiment [27]. The bimodal systems studied contain chains with molecular weights of 30.8 and 6.6 kg/mol. The percentage of the short chains is 75%.

We present three cases with different surface densities (s). The c parameter for the interaction between surface and polymer is K1.
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when short chains reach the size of the medium size chains,

i.e. when the trimodal distribution collapses to a bimodal

distribution (170/113 kg/mol).

We complete our study with a systematic investigation of

the PEO solution. Our investigations have shown that for

this solution it is necessary to assume an interaction

parameter between polymer and surface, different from

the interaction parameter between solvent and surface. In

Fig. 8, we reproduced three volume fraction profiles

corresponding to three different surface densities of the

6.6/30.8 kg/mol bimodal system. Our nSCF results are
Fig. 9. Volume fraction profiles of PEO for various values of the interaction param

with molecular weights 30.8 and 6.6 kg/mol, the percentage of the short chains is 7

an significant deviation from bi-parabolic profile. The parameter for the interacti
compared with NR experimental data, as the three cases

studied are the ones studied by NR experiments in Ref. [27].

The curve for surface density of 0.2 nmK2 shows very good

agreement with the second parabola of the experimental fit.

However, near the surface there is an important deviation.

As surface density degrease, deviations from the exper-

imental results become more pronounced. Similar results

have been obtained with previous numerical SCF method

[27] (in which the polymer stiffness is not taken into

account), where, actually, the deviations between theo-

retical and experimental results were much larger [27]. We
eter between polymer and solvent c. The system studied consists of chains

5% and sZ0.2 chains/nm2. Increase of c causes shrinkage of the brush and

on between surface and polymer is K1.



Fig. 10. Volume fraction profiles of PEO for low surface density (0.1 chains/nm2) for various characteristic ratios. For CNZ3.4 (solid line) the system is the

same as those presented in Fig. 8 (cZ0.12). For higher values of characteristic ratios, CNZ15 (dash line) and CNZ18 (dot line) the interaction parameter is

assumed to have higher value, cZ0.5, in order to describe the hydrophobic behaviour of PEO for this surface density. As CN increases we observe a much

better agreement between the experimental and calculated polymer volume fraction close to the surface, where the bi-parabolic profile is vanished. At even

higher values of CN the ‘sudden’ reduction of the polymer volume fraction very close to the surface is described even better. The results from NR are presented

with dashed-dotted line.
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believe, the reason for the observed differences between

calculated and experimentally observed results is the

existence of specific interactions (as for example Hydrogen

bonding) between monomer (ethyl-oxide) and solvent

(water) and between polymer and solvent and the air–

water interface. For these cases the mean-field approxi-

mation of a stable-solvent solution is a reasonable

approximation, only for a very narrow region of polymer

surface density.

For the case with surface density of 0.2 nmK2, at which

our results are satisfactory, we present a systematic

investigation for other type of solvents. In Fig. 9 we

confirm a shrinking of the brush as contacts with solvent

become unfavorable (bad solvent). The shrinkage effect is

enormous as we increase the interaction parameter, so that

for cZ0.7 the bi-parabolic profile practically disappears.

Very similar effects were observed for the PS chains

dissolved in various solvents (not shown).

Finally, we have tried to explain the observed behavior

for the lowest surface density case. In this case, the

experimentalists suggest one parabolic profile for the

volume fraction profile of the polymer [27]. By system-

atically studying this case, assuming various characteristic

ratios, we have found that the best agreement between the

nSCF results and the NR profiles is achieved for higher

values of the characteristic ratio and the interaction

parameter between solvent and polymer (cw0.5)

(Fig. 10). In order to explain this increase of the stiffness

and the change in the solubility of the macromolecule, we

exploit the hydrophobic behavior of the PEO. For low
surface densities (for example for surface density of

0.1 nmK2) the average distance between the grafting points

is so large that practically each macromolecular chain is

surrounded by mainly water molecules. Hence each

macromolecule is encaged by water molecules [54] and

effectively acquires a rod-like conformation. Thus it shows

an effective very high characteristic ratio. Moreover as

shown by the NR results, the polymer concentration is very

high on the surface and drops abruptly. This behavior can be

explained by the acceptance of almost bad solvent and a

very stiff ‘diluted’ polymer chain (hydrophobic hydration,

[54]). Actually, we have found that for large values of the

characteristic ratio, the agreement between the nSCF

estimated volume fraction profiles and the NR estimated

profiles is very good for the low (0.1 nmK2) surface density

case (Fig. 10).
5. Conclusions

We have systematically studied a poly-disperse

polymer brush dissolved in a good solvent by applying

a recently developed lattice-based self-consistent mean

field theory. Bimodal and trimodal di-block structures

were investigated. In all cases of PS brushes we have

achieved very good agreement with the experimental

results of Ref. [25]. Deviations between theory and

experiment were noticed for the PEO for low

concentrations, because of special interactions between

monomer and solvent [27]. It worth pointing out that
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our SCF methodology produces very good quantitative

agreement. For some low surface densities, the PEO

system does not show good agreement, which is

attributed to the presence of specific interactions

between polymer and solvent and polymer and surface.

We have also systematically studied the structure of the

bi-disperse and tri-disperse brush for various values of

the molecular weights of the components and of the

overall surface densities. For the bimodal brush we have

found that the short chains even in the strongly

interacting regime have nearly the same dimension in

the bimodal nonolayer as in the single-component

monolayers. This is not true for the long chains.

Moreover, we have shown that in the trimodal brush

the chains with the intermediate size can play an

important role. Finally, we have found that when c

parameter, for the interaction between polymer and

solvent, is bigger than 0.5 we observe a deviation from

the bi-parabolic profile.
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